

Кафедра ТЕОРЕТИЧЕСКИХ ОСНОВ ЭЛЕКТРОТЕХНИКИ

Лабораторная работа № 11 по дисциплине «Теоретические основы электротехники»

«Исследование линейной электрической цепи несинусоидального периодического тока»

Студент:	
Группа:	
Бригада:	
Подпись студента:	
Дата выполнения:	
Дата защиты:	
Оценка:	
Преподаватель:	
Подпись преподавателя:	

ТЕОРЕТИЧЕСКАЯ СПРАВКА

Представление несинусоидального напряжения (тока) в виде суммы напряжений (токов) постоянной составляющей и гармоник

Периодическое несинусоидальное напряжение источника питания, напряжения на элементах или ток в них могут быть представлены в виде суммы составляющих, получаемых на основе разложения в ряд Фурье в виде:

$$u(t) = U_0 + \sum_{k=1}^{\infty} U_{km} \sin\left(k\omega t + \psi_k\right),$$
 (1)

где U_0 – постоянная составляющая, равная среднему за период значению $U_0 = \frac{1}{T} \int_0^T u(t) dt$,

*U*_{*km*}, φ_{*k*} – амплитуда и начальная фаза *k*-ой гармоники, определяемые формулами Эйлера-Фурье.

График напряжения разнополярных импульсов u(t) в виде меандра показан на рис. 1 (жирной линией).

Это напряжение можно представить в аналитическом виде:

$$u(t) = \begin{cases} U_{\max}, & t \in (0, \frac{T}{2}); \\ -U_{\max}, & t \in (\frac{T}{2}, T). \end{cases}$$

Меандр (рис. 1) относится к частному случаю периодических кривых симметричных относительно оси абсцисс, т.е. u(t)=-u(t+T/2), поэтому раскладываются в ряд, который не содержит постоянной составляющей и четных гармоник. Кроме того, представленная функция u(t) симметрична относительно начала координат, т.е. u(t)=-u(-t). Гармонические составляющие ряда (1) в этом случае определяются синусными составляющими.

Таким образом, разложение в ряд Фурье для меандра выглядит следующим образом:

$$u(t) = U_{1m}\sin\omega t + \frac{1}{3}U_{1m}\sin3\omega t + \frac{1}{5}U_{1m}\sin5\omega t + \frac{1}{7}U_{1m}\sin7\omega t + \dots,$$
(2)

здесь $U_{1m} = \frac{4}{\pi}U_{max}$ – амплитуда основной гармоники (*k*=1), $U_{km} = U_{1m}/k$ – амплитуды высших гармоник меандра (*k*=3, 5, 7...).

Рис. 1

На рис. 1 помимо графика напряжения меандра u(t) показаны графики гармоник $u_{(1)}, u_{(3)}, u_{(5)}, u_{(7)}$ и сумма разного числа составляющих разложения в ряд Фурье. В работе для меандра ограничимся тремя гармониками, т.е. примем $u(t) \approx U_{1m} \sin \omega t + \frac{1}{3}U_{1m} \sin 3\omega t + \frac{1}{5}U_{1m} \sin 5\omega t$.

Напряжение при однополупериодном выпрямлении u(t) (рис. 2), может быть представлено разложением в ряд Фурье, содержащий постоянную составляющую и косинусные составляющие:

$$u(t) = \frac{2U_m}{\pi} \left(\frac{1}{2} + \frac{\pi}{4} \cos \omega t + \frac{\cos 2\omega t}{1 \cdot 3} - \frac{\cos 4\omega t}{3 \cdot 5} + \dots \right).$$
(3)

Рис. 2

Расчет электрической цепи несинусоидального тока

В основе расчета линейной электрической цепи несинусоидального тока лежит принцип наложения: производится расчет искомых величин на постоянной составляющей и на частотах соответствующих *k*-ых гармоник, при расчете гармонических составляющих применяется комплексный метод. Для *k*-

ой гармоники индуктивные и емкостные сопротивления $X_L^{(k)} = k\omega L$, $X_C^{(k)} = \frac{1}{k\omega C}$

Действующие значения напряжения (тока) вычисляются по найденным постоянной составляющей и действующим значениям отдельных гармоник:

$$U = \sqrt{U_0^2 + \left(\frac{U_{1m}}{\sqrt{2}}\right)^2 + \left(\frac{U_{2m}}{\sqrt{2}}\right)^2 + \cdots}.$$
 (4)

Мгновенные значения несинусоидальных напряжений или токов равны сумме мгновенных значений всех составляющих, найденных при рассмотрении постоянной составляющей и каждой гармоники в отдельности:

 $u(t) = U_0 + U_{1m} \sin(\omega t + \psi_1) + U_{2m} \sin(2\omega t + \psi_2) + \cdots$

Активная мощность равна сумме активных мощностей, рассчитанных на постоянной и гармонических составляющих (равенство Парсеваля):

 $P = U_0 I_0 + U_{(1)} I_{(1)} \cos \varphi_{(1)} + U_{(2)} I_{(2)} \cos \varphi_{(2)} + \cdots,$

где $U_{(k)} = \frac{U_{km}}{\sqrt{2}}$, $I_{(k)} = \frac{I_{km}}{\sqrt{2}}$ – действующие значения *k*-ой гармоники напряжения и тока, $\phi_{(k)} = \psi_{u^{(k)}} - \psi_{i^{(k)}}$ – сдвиг фаз между *k*-ой гармоники напряжения и *k*-ой гармоники тока.

Расчет постоянной составляющей, действующих значений напряжений (токов) и активной мощности по дискретным значениям несинусоидальных напряжений (токов)

Основные величины, определяющие режим в электрической цепи, наряду с рассмотрением отдельных гармоник, могут быть вычислены приближенно по дискретным значениям мгновенных величин. Так при рассмотрении периодического напряжения произвольной формы период T разбивается на M равных интервалов (отрезков). В данной работе рекомендуется принять M=16. Точки в начале каждого интервала, определяющие положение узлов, обозначаются n=0, 1, 2, ..., (M-1). В таком случае:

а) постоянная составляющая напряжения (тока), равная среднему значению в (1), находится заменой интеграла конечной суммой:

$$U_0 = \frac{1}{M} \sum_{n=0}^{M-1} u_n , \qquad (5)$$

где $\sum_{n=0}^{M-1} u_n$ – алгебраическая сумма всех значений напряжения в узлах, n – номер узла. 6) действующее значение напряжения (тока), может быть найдено аналитически в интегральной форме как среднеквадратичное значение за период $U = \sqrt{\frac{1}{T} \int_{0}^{T} u^{2}(t) dt},$ или приближенно с применением дискретных значений $U = \sqrt{\frac{1}{M} \sum_{n=0}^{M-1} u_{n}^{2}}$ с учетом масштабного коэффициента: $U = m_{u} \sqrt{\frac{1}{M} \sum_{n=0}^{M-1} l_{n}^{2}};$ (6)

в) активная мощность *P*, равная среднему значению от мгновенной мощности p(t) за период $P = \frac{1}{T} \int_{0}^{T} p(t) dt = \frac{1}{T} \int_{0}^{T} u(t) i(t) dt$, также может быть

определена приближенно через дискретные значения:

$$P = \frac{1}{M} \sum_{n=0}^{M-1} u_n i_n \,. \tag{7}$$

Расчеты по дискретным значениям могут быть реализованы в соответствующих программах (например, SMath Studio, MathCAD и др.), в таком случае дискретные значения на интервале периода *T* представляются в виде таблицы.

1. ЦЕЛЬ РАБОТЫ

Целью лабораторной работы является исследование гармонического состава кривых напряжения и тока в линейных электрических цепях с источником несинусоидального напряжения. Экспериментально определяется влияние индуктивной катушки и конденсатора на форму кривой тока в цепи с источником несинусоидального напряжения.

Ключевые слова: несинусоидальный ток, несинусоидальное напряжение; ряд Фурье; меандр; мгновенное, среднее, действующее значения периодического напряжения (тока); мощность; гармоника; метод расчета; измерение; системы приборов; дискретные значения.

2. ПОДГОТОВКА К РАБОТЕ И ВОПРОСЫ ДЛЯ ДОПУСКА СТУДЕНТОВ К РАБОТЕ

1. Осуществить разложение заданного напряжения u(t) прямоугольной формы (меандра – рис. 1) в ряд Фурье, ограничиваясь тремя членами ряда, $U_{\text{max}} = 7$ В.

Найти действующее значение напряжения U:

• путем интегрирования заданной функции *u*(*t*);

• используя формулу (4) с учетом трех членов ряда Фурье.

Сравнить результаты расчета.

2. Для схемы на рис. 1П при заданных параметрах *R*, *R*_к, *L* и *C* (табл. 1):

• найти мгновенные значения тока и напряжения на конденсаторе с учетом разложения входного напряжения (меандра) до трех членов ($U_{\text{max}}=7$ B);

• рассчитать действующие значения тока и напряжения на конденсаторе;

• построить на одном графике кривые мгновенных значений отдельных гармоник и их сумму (соответственно для тока и напряжения на конденсаторе);

• составить баланс активной мощности.

Гаолица Г				
№ бригады	<i>R</i> , Ом	L , м Γ н	<i>R</i> _к , Ом	<i>С</i> , мкФ
1, 13, 25	10	50	50	56
2, 14, 26	10	60	60	56
3, 15, 27	10	70	70	56
4, 16, 28	10	80	80	56
5, 17, 29	10	50	50	68
6, 18, 30	10	60	60	68
7, 19, 31	10	70	70	68
8, 20, 32	10	80	80	68
9, 21, 33	10	50	50	82
10, 22, 34	10	60	60	82
11, 23, 35	10	70	70	82
12, 24, 36	10	80	80	82

Таблица 1

3. РАБОЧЕЕ ЗАДАНИЕ

Источником несинусоидального напряжения в форме знакопеременных импульсов является модуль **ФУНКЦИОНАЛЬНЫЙ ГЕНЕРАТОР**. Этот модуль также позволяет получить необходимые синусоидальные напряжения соответствующих разложению в ряд Фурье гармоник.

Пассивные элементы электрической схемы выбирают из блоков МОДУЛЬ РЕАКТИВНЫХ ЭЛЕМЕНТОВ, МОДУЛЬ РЕЗИСТОРОВ и МОДУЛЬ ДОПОЛНИТЕЛЬНЫЙ. Активное сопротивление R_{κ} катушки измеряют мультиметром. Измерения действующих значений входного напряжения U и тока I, активной мощности P и угла сдвига фаз φ выполняют встроенные в модуль ИЗМЕРИТЕЛЬ ФАЗЫ приборы. Для измерения действующего значения напряжения на конденсаторе U_C и служит мультиметр PP блока МОДУЛЬ МУЛЬТИМЕТРОВ. Для получения кривых тока и напряжения используют ОСЦИЛЛОГРАФ.

• Собрать электрическую цепь по схеме, приведенной на рис. 1П протокола измерений. Тумблер **SA2** модуля **ИЗМЕРИТЕЛЬ ФАЗЫ** установить в положение I2.

• Проверить собранную электрическую цепь в присутствии преподавателя.

• Установить в модуле **РЕАКТИВНЫЕ** ЭЛЕМЕНТЫ заданные преподавателем величины индуктивности *L* катушки и емкости *C* конденсатора. Измерить мультиметром активное сопротивление *R*_к катушки. Записать эти значения в протокол измерений.

<u>Опыт №1</u>

• Включить автоматический выключатель QF блока МОДУЛЬ ПИТАНИЯ, тумблеры Сеть модуля ФУНКЦИОНАЛЬНЫЙ ГЕНЕРАТОР и SA1 блока МОДУЛЬ ИЗМЕРИТЕЛЬ ФАЗЫ. Переключатель Форма модуля ФУНКЦИОНАЛЬНЫЙ ГЕНЕРАТОР установить в положение \Box . Регулятором Частота установить частоту f=50 Гц. Регулятором Амплитуда установить значение амплитудного значения напряжения $U_{max}=7$ В.

• Включить ОСЦИЛЛОГРАФ. Настроить нулевое значение сигнала, повернуть ручку регулятора вертикальной развертки до упора по ходу часовой стрелки.

1. Подключить **Вход 1** осциллографа к источнику. Настроить ручки горизонтальной развертки осциллографа таким образом, чтобы на экране полностью укладывался один период колебаний (задание масштаба m_t). Установить переключатель усиления по напряжению таким образом, чтобы максимально использовалась площадь экрана. Используя масштаб m_U на переключателе усиления по напряжению, убедиться, что амплитуда входного напряжения составляет U_{max} =7 В. В остальных опытах использовать указанный порядок настройки осциллографа.

• Подключить **Вход 1** осциллографа к резистору с сопротивлением R. Сфотографировать с экрана **ОСЦИЛЛОГРАФА** кривую зависимости $u_R(t)$ и перенести ее на миллиметровую бумагу. На рисунке обозначить оси, указать масштабы *m*_U и *m*_t, подписать номер опыта и кривую.

• Подключить **Вход 1** осциллографа к конденсатору емкостью *C*. Сфотографировать с экрана **ОСЦИЛЛОГРАФА** кривую зависимости $u_C(t)$. На рисунке обозначить оси, указать масштабы m_U и m_t , подписать номер опыта и кривую.

• Измерить приборами модуля ИЗМЕРИТЕЛЬ ФАЗЫ действующие значения напряжения входного напряжения U и тока I, активную мощность P. Вольтметром РР блока МОДУЛЬ МУЛЬТИМЕТРОВ измерить действующее значение напряжения U_c на конденсаторе C. Измеренные значения занести в табл. 1П протокола измерений.

<u>Опыт №2</u>

• Занести в табл. 1П протокола измерений действующие значения гармонических составляющих входного напряжения.

• Переключатель **Форма** модуля **ФУНКЦИОНАЛЬНЫЙ ГЕНЕРАТОР** установить в положение \sim .

• Регулятором Амплитуда установить величину действующего значения основной гармоники $U_{(1)}$ входного напряжения.

• Измерить приборами модуля ИЗМЕРИТЕЛЬ ФАЗЫ действующие значения напряжения U и тока I, активную мощность P. Вольтметром PP блока МОДУЛЬ МУЛЬТИМЕТРОВ измерить напряжение на конденсаторе емкостью C. Измеренные значения занести в табл. 1П. Указанный порядок измерений использовать в следующих опытах.

• Регулятором Частота установить на выходе модуля ФУНКЦИОНАЛЬНЫЙ ГЕНЕРАТОР частоту *f*=150 Гц. Регулятором Амплитуда установить величину действующего значения третьей гармоники *U*₍₃₎ входного напряжения.

• Выполнить измерения. Измеренные значения занести в табл. 1П.

• Регулятором Частота установить на выходе модуля ФУНКЦИОНАЛЬНЫЙ ГЕНЕРАТОР частоту *f*=250 Гц. Регулятором Амплитуда установить величину действующего значения пятой гармоники *U*₍₅₎ входного напряжения.

• Выполнить измерения, измеренные значения занести в табл. 1П.

- Выполнить указанные в протоколе измерений расчеты.
- Прикрепить осциллограммы сигналов к протоколу измерений.
- Протокол измерений утвердить у преподавателя.

• Выключить тумблеры Сеть модуля ФУНКЦИОНАЛЬНЫЙ ГЕНЕРАТОР и

SA1 блока МОДУЛЬ ИЗМЕРИТЕЛЬ ФАЗЫ. Выключить ОСЦИЛЛОГРАФ.

• Выключить автоматический выключатель QF блока МОДУЛЬ ПИТАНИЯ.

<u>Опыт №3</u>

RL-цепь

• Собрать цепь в соответствии с рис. 2П с катушкой индуктивностью L_a из блока **МОДУЛЬ ДОПОЛНИТЕЛЬНЫЙ** и резистором сопротивлением R=10 Ом.

• Включить автоматический выключатель QF блока МОДУЛЬ ПИТАНИЯ, тумблеры Сеть модуля ФУНКЦИОНАЛЬНЫЙ ГЕНЕРАТОР и SA1 блока МОДУЛЬ ИЗМЕРИТЕЛЬ ФАЗЫ. Переключатель Форма модуля ФУНКЦИОНАЛЬНЫЙ ГЕНЕРАТОР установить в положение \Box . Регулятором Частота установить частоту f=250 Гц. Регулятором Амплитуда установить значение амплитудного значения напряжения $U_{max}=7$ В.

• Включить ОСЦИЛЛОГРАФ. Настроить нулевое значение сигнала, повернуть ручку регулятора вертикальной развертки до упора по ходу часовой стрелки.

• Подключить **Вход 1** осциллографа к источнику. Настроить ручки горизонтальной развертки осциллографа таким образом, чтобы на экране полностью укладывался один период колебаний (задание масштаба m_t). Установить переключатель усиления по напряжению таким образом, чтобы максимально использовалась площадь экрана. Используя масштаб m_U на переключателе усиления по напряжению убедиться, что амплитуда входного напряжения составляет $U_{\text{max}}=7$ В. В остальных опытах использовать указанный порядок настройки осциллографа.

• Подключить **Вход 1** осциллографа к резистору с сопротивлением R. Сфотографировать с экрана **ОСЦИЛЛОГРАФА** кривую зависимости $u_R(t)$ и перенести ее на миллиметровую бумагу. На рисунке обозначить оси, указать масштабы m_U и m_t , подписать номер опыта и кривую.

RC-цепь

• Собрать цепь в соответствии с рис. 3Π с конденсатором емкостью C=3,3 мкФ и резистором с сопротивлением R=10 Ом.

• Подключить **Вход 1** осциллографа к резистору с сопротивлением R. Сфотографировать с экрана **ОСЦИЛЛОГРАФА** кривую зависимости $u_R(t)$ и перенести ее на миллиметровую бумагу. На рисунке обозначить оси, указать масштабы m_U и m_t , подписать номер опыта и кривую.

4. ПРОТОКОЛ ИЗМЕРЕНИЙ К ЛАБОРАТОРНОЙ РАБОТЕ № 11

<u>Опыты №1 и №2</u>

Параметры элементов цепи: C=_____мк Φ ; L=____мГн; $R_{\kappa}=$ ____Ом, R=10 Ом. Амплитуда несинусоидального напряжения $U_{max}=7$ В.

Таблица 1П

No	Теория		Эксперимент				
л <u>∘</u> опыта	Действующее	Вид входного	<i>U</i> , B	<i>I</i> , мА	U_C, \mathbf{B}	<i>Р</i> , Вт	φ, °
	значение, В	напряжения					
1	<i>U</i> =7 B	Несинусоидальное					
1		напряжение $u(t)$					
2	<i>U</i> ₍₁₎ =	Синусоидальное					
2		напряжение и(1)					
2	U ₍₃₎ =	Синусоидальное					
Z		напряжение и(3)					
2	II	Синусоидальное					
Δ	$U_{(5)}-$	напряжение и(5)					

5. СОДЕРЖАНИЕ ОТЧЕТА

2. Корректно оформленная подготовка в полном объеме.

3. К отчету должны быть приложены аккуратно оформленные экспериментальные осциллограммы для всех трех опытов. На каждой осциллограмме должны быть указаны номер опыта и наименование изображенной кривой, обозначены оси, указаны масштабы *m*_U и *m*_t.

4. Опыт №1:

• вычислить действующие значения несинусоидального тока и напряжения на конденсаторе по дискретным значениям (см. Теоретическую справку);

• сравнить полученные значения с результатами расчета из подготовки (пункт 2 подготовки) и с результатами измерений (табл. 1П).

5. Опыт №2:

• записать мгновенные значения тока и напряжения на конденсаторе как суммы первой и высших гармоник;

• построить на одном графике кривые мгновенных значений отдельных гармоник и их сумму на основе полученных экспериментальных данных (соответственно для тока и напряжения на конденсаторе);

• определить действующие значения тока и напряжения на конденсаторе;

• рассчитать активную мощность по гармоническим составляющим;

• сравнить результаты эксперимента с расчетными данными из подготовки к работе.

6. Опыт №3:

• вычислить действующее значение несинусоидального тока для *RL*-цепи и *RC*-цепи (опыт №3) по дискретным значениям (см. Теоретическую справку);

• сравнить полученное значение с результатом расчета, используя разложение в ряд Фурье.

6. ВОПРОСЫ ДЛЯ ЗАЩИТЫ РАБОТЫ

Все ответы на вопросы должны сопровождаться необходимыми схемами, формулами, численными результатами расчетов, графическими иллюстрациями (графиками, диаграммами и т.д.) и содержать однозначный ответ на поставленные вопросы.

1. Записать аналитическое выражение для несинусоидального напряжения (меандра) u(t) при его разложении в ряд Фурье при условии, что кривая u(t) на рис. 1 сдвинута относительно начала координат на:

а) Т/4 вправо; б) Т/2 влево; в) Т/4 влево; б) Т/2 вправо.

Изменятся ли амплитудные значения гармоник при этом?

2. Записать аналитическое выражение разложения в ряд Фурье для напряжения в форме однополярных импульсов. При записи учесть постоянную составляющую и выражение (2), приведенное для меандра в Теоретической справке.

3. Определить коэффициенты амплитуды для следующих форм напряжения:

а) меандр;

б) однополупериодное выпрямление;

в) однополярный импульс.

Сравнить полученные коэффициенты с коэффициентом амплитуды синусоидальной функции.

4. Определить коэффициенты формы для следующих форм напряжения:

а) меандр;

б) однополупериодное выпрямление;

в) однополярный импульс.

Сравнить полученные коэффициенты с коэффициентом формы синусоидальной функции.

5. По результатам полученных экспериментальных данных (опыт №2) произвести расчет следующих коэффициентов для тока:

- коэффициент амплитуды;
- коэффициент формы;
- коэффициент искажения;
- суммарный коэффициент гармонических составляющих;
- коэффициенты гармонических составляющих (k=3; k=5).

6. Как изменятся кривые мгновенных значений несинусоидального тока и напряжения на конденсаторе в *RC*-цепи, если напряжение на входе имеет форму однополярных импульсов?

7. Как изменятся действующие значения несинусоидального тока и напряжения на индуктивной катушке в *RL*-цепи, если напряжение на входе имеет форму однополярных импульсов?

8. На практическом примере для электрической цепи несинусоидального тока продемонстрируйте отличия в результатах измерений напряжений и токов приборами электромагнитной, магнитоэлектрической и индукционной систем.

Методические указания по проведению виртуальной лабораторной работы №11 (ДО) «Исследование линейной электрической цепи несинусоидального периодического тока»

Программа, написанная в среде LabVIEW, называется виртуальным прибором (ВП). ВП симулирует реальные физические процессы и позволяет создавать приборы, фиксирующие характеристики исследуемых процессов. Для электромагнитных процессов это осциллограф или любой измерительный амперметр, вольтметр, прибор – ваттметр. У пользователя создается впечатление, что он работает с реальным лабораторным стендом. Виртуальная исследование лаборатория позволяет провести различных режимов электрических цепей, подготовку и проведение лабораторных работ без непосредственного доступа к лабораторному стенду.

Лицевая панель – это интерфейс пользователя ВП. Лицевая панель используется для запуска и выполнения Лабораторной работы. Пример инструментальной панели показан ниже.

Главное меню

Главное меню в верхней части окна ВП содержит пункты, общие с другими приложениями, такие команды как Open, Save, Copy, Paste, а также специфические пункты меню LabVIEW. Меню появляется в верхней части экрана. Пункт меню File используется для открытия, закрытия, сохранения и лабораторной печати ВΠ. В режиме выполнения работы функции редактирования недоступны. Пункт меню Help используется для получения информации о палитрах, меню, инструментах, ВП и функциях, для получения пошаговой инструкции использования LabVIEW и информации о компьютерной памяти.

Выполнение лабораторной работы

Все действия пользователя производятся с помощью нажатия левой кнопкой мышки (ЛКМ) на соответствующие иконки:

E>	Кнопка запуска Run в правом верхнем углу – запускает				
	однократное выполнение Лабораторной работы. Производится				
	снятие экспериментальных данных при заданных параметрах				
	элементов.				
R	Кнопка непрерывного запуска Run Continuously. При нажатии на				
	иконку ЛКМ цвет «стрелки» становится темным. Снятие				
	экспериментальных данных проводится в непрерывном режиме				
	при многократном изменении параметров элементов.				
	Лабораторная работа выполняется до момента повторного нажатия				
	на иконку. Цвет иконки становится опять светлым.				
2	Инструмент УПРАВЛЕНИЕ используется для изменения значения				
14.00	параметров элементов или ввола значений (напряжения.				
	сопротивления инлуктивности емкости) Изменить значение				
	можно разными способами.				
	- переместив киюч (Toggle Switch) в нужное положение (например				
	при выборе типа вхолного напряжения)				
	меандр Синусоида				
	выбран меандр				
	- ввелением числового значения непосредственно в окно				
	инликатора элемента				
	При навелении курсора на такой элемент как строковый элемент				
	управления, значок инструмента меняется: 🛄. После				
	"зачеркивания" значения перемешением мышки влево при нажатой				
	ЛКМ, можно, используя цифровые клавиши клавиатуры, ввести				
	необходимое значение параметра. В верхнем правом углу в этом				
	\checkmark –				
	случае появляется иконка 📟 . После однократного нажатия ЛКМ				
	значение параметра меняется, и иконка пропадает.				
	заданное значение				
	емкости				
	заданное значение				
	индуктивности,				
	автоматическое				
	изменение 70 70				
	Внимание! Серый цвет поля индикатора означает, что значение				
	изменить нельзя.				

Виртуальный лабораторный стенд имеет МОДУЛЬ ИЗМЕРИТЕЛЬНЫЙ для экспериментального определения действующего значения тока, действующих значений входного напряжения и напряжения на емкостном элементе, активной мощности и в случае синусоидального напряжения сдвига фаз между входным напряжением и током.

Виртуальный прибор ОСЦИЛЛОГРАФ позволяет получать кривые мгновенных значений входного напряжения, тока и напряжения на емкостном

элементе. При подведении на управляющей кнопке можно отключить режим наблюдения кривой (в активном режиме кнопка имеет зеленый цвет). Также возможно изменение масштаба и сдвиг изображения по вертикальной и горизонтальной оси с помощью управляющей ручки (Knob).

После выбора типа источника параметры источника можно задать с помощью ручек изменения параметров. В режиме МЕАНДР максимальное значение и частота фиксированы, в режиме СИНУСОИДА можно задавать амплитуду и частоту синусоидального входного напряжения с помощью управляющей ручки (Knob).

15

Рабочее задание

Для удобства проведения лабораторной работы Рабочее задание выведено на экран пользователя (используется вертикальный ползунок).

РАБОЧЕЕ ЗАДАНИЕ	1 опыт	
	1. Переключатель модуля ГЕНЕРАТОР установить в положение МЕАНДР. Частота автоматически установится 50 Гц. Регулятором АМПЛИТУДА	
	установить значение порядка 7 В. Рассчитать амплитуды первой, третьей и пятой гармоник ряда Фурье входного напряжения. Сравнить с	=
	рассчитанными в Подготовке к работе.	
	2. Включить ОСЦИЛЛОГРАФ для наблюдения КРИВОЙ МГНОВЕННОГО ЗНАЧЕНИЯ НАПРЯЖЕНИЯ на входе цепи. Горизонтальную развертку	
	осциллографа выбрать так, чтобы на экране укладывалось полтора или два периода кривой.	
	3. Включить ОСЦИЛЛОГРАФ для наблюдения КРИВОЙ МГНОВЕННОГО ЗНАЧЕНИЯ ТОКА.	
	4. Включить ОСЦИЛЛОГРАФ для наблюдения КРИВОЙ МГНОВЕННОГО ЗНАЧЕНИЯ НАПРЯЖЕНИЯ НА КОНДЕНСАТОРЕ.	-
,		

Расчетный модуль

Расчет несинусоидальных токов и напряжений в линейных электрических цепях проводится методом наложения с использованием ряда Фурье. Расчетный модуль наглядно показывает, как отличается кривая мгновенного значения тока и напряжения на емкостном элементе при суммировании трех гармоник, провести сравнение точности расчетов.

Требования к компьютеру пользователя

Для запуска ВП и выполнения лабораторной работы (исполняемый ехефайл) необходимо сначала установить LabVIEW Run-Time Engine. Для этого вам понадобится:

1) зарезервированный объем памяти на жестком диске не менее 600 МБ, что связано с установкой LabVIEW RunTime Engine 2009;

2) объем памяти ОЗУ не менее 1 Гб;

3) операционные системы для персональных компьютеров типа Windows XP, Windows Vista, Windows 7, Windows 8, Windows 10, Windows 11 (возможно, потребуется режим совместимости).

4) скорость интернет-канала – не менее 5 Мбит/с.