ФГБОУ ВПО

НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ

МОСКОВСКИЙ ЭНЕРГЕТИЧЕСКИЙ ИНСТИТУТ

МЗИ

КАФЕДРА ТЕОРЕТИЧЕСКИХ ОСНОВ ЭЛЕКТРОТЕХНИКИ

Лабораторная работа № 25

Моделирование длинной линии однородной цепной схемой

Выполнил:	
Группа:	
Проверил:	

Лабораторная работа № 25

Моделирование длинной линии однородной цепной схемой

Цель работы – исследование электромагнитных процессов в длинной линии методами физического моделирования процессов в сосредоточенной электрической цепи (цепной схеме), сравнение результатов физического моделирования с результатами расчета по аналитическому описанию процессов в линии.

Ключевые слова: электрическая цепь с распределенными параметрами (длинная линия), волновое сопротивление, коэффициент распространения, бегущая волна, коаксиальный кабель, физическая модель, однородная цепная схема, математическая модель.

Объект и задача моделирования

Объект исследования: однородная длинная линия (коаксиальный кабель с совершенной изоляцией) при синусоидальных токах и напряжениях и различных режимах нагрузках. Физической моделью длинной линии является однородная цепная схема, состоящей из каскадно соединенных П-образных четырехполюсников - звеньев низкочастотных фильтров.

Задача моделирования: Процессы в модели имеют другую физическую природу, но математически они описываются теми же уравнениями, что и процессы в длинной линии без потерь. Результаты экспериментального исследования модели соотносятся с результатами исследования объекта моделирования.

Теоретическая справка

Аналитическое описание процессов в длинной линии

Линию или другое электротехническое устройство (цепь), имеющее большую протяженность в одном направлении, в которой электрические сопротивления, проводимости, индуктивности и электрические емкости распределены вдоль линии (цепи), рассматривают как цепь с распределенными параметрами или длинную линию. электропередач, линии связи, высокочастотные коаксиальные Линии линии радиотехнических и телевизионных устройств – цепи с распределенными параметрами. Линия называется однородной, если распределение параметров равномерно, то есть взаимное расположение, сечение проводов, параметры сред не изменяются вдоль линии. Для однородной линии определены первичные параметры - сопротивление, индуктивность, емкость и проводимость на единицу длины. Первичные параметры задаются как R_0 , Ом/м [Ом/км] - сопротивление прямого и обратного проводов (жилы и оболочки) на единицу длины; L₀, Гн/м [Гн/км] – индуктивность петли, образуемой прямым и обратным проводами; C_0 , Φ/M [Φ/KM] – емкость между проводами; G_0 , См/м [См/км] – проводимость между проводами. Если при описании процессов пренебрегают

сопротивлением проводников, считают изоляцию совершенной ($R_0 \approx 0$ и $G_0 \approx 0$), то двухпроводные воздушные линии и коаксиальные кабели рассматривают как *линии без потерь*. Первичными параметрами линии без потерь являются L_0 , Гн/м [Гн/км] - индуктивность на единицу длины (удельная или погонная индуктивность) и C_0 , Ф/м [Ф/км] – емкость на единицу длины (удельная или погонная емкость).

В длинных линиях токи и напряжения – функции двух переменных i(x,t), u(x,t), и процессы в длинных линиях математически описываются *уравнениями в частных производных*. Для облегчения анализа процессов в линиях с распределенными параметрами вводят понятия *прямых* и *обратных волн*.

$$u(x,t) = u_{\text{IID}}(x,t) + u_{\text{odd}}(x,t), \ i(x,t) = i_{\text{IID}}(x,t) - i_{\text{odd}}(x,t).$$

Каждое из слагаемых напряжения и тока описывает *бегущую волну*. Причем первое слагаемое соответствует прямой волне – она движется в направлении возрастания координаты x, а второе слагаемое – обратной волной, которая движется в направлении убывания координаты x. Основными характеристиками бегущей волны являются *фазовая скорость* и *длина волны*. *Фазовой скоростью* волны v называется скорость перемещения фиксированной фазы колебания, перемещаясь с которой фаза остается постоянной, *длиной волны* λ называется расстояние между ближайшими двумя точками, колеблющимися в одной фазе.

При расчете установившихся режимов при синусоидальном напряжении источника заданной частоты $\omega = 2\pi f$ используют комплексный метод расчета, соответствующие им комплексные токи и напряжения остаются функцией одной пространственной координаты *х*:

$$\underline{U}(x) = \underline{U}_{np}(x) + \underline{U}_{obp}(x), \ \underline{I}(x) = \underline{I}_{np}(x) - \underline{I}_{obp}(x).$$

Вторичные параметры длинной линии: Z_c [Ом] - волновое (характеристическое) сопротивление линии (отношение комплексного напряжения к комплексу электрического тока синусоидальной бегущей волны) и комплексный коэффициент распространения $\gamma = \alpha + j\beta$ (комплексная величина, характеризующая изменение амплитуды (α , [Нп/м] или [Нп/км]) и фазы (β , [рад/м] или [рад/км]) синусоидальной бегущей волны). Для линии без потерь волновое сопротивление не зависит от частоты и определяется через первичные параметры линии:

$$Z_C = \sqrt{\frac{L_0}{C_0}}$$

Коэффициент распространения $\underline{\gamma} = j\beta$ ($\alpha = 0$), действительную величину β (рад/м [рад/км]) называют коэффициентом фазы, для линии без потерь коэффициент фазы линейно зависит от частоты: $\beta = \omega \sqrt{L_0 C_0}$. Фазовая скорость для линий без потерь

не зависит от частоты: $v = \frac{\omega}{\beta} = \frac{1}{\sqrt{L_0 C_0}}$, длина волны зависит от частоты и фазовой

скорости: $\lambda = \frac{v}{f}$. Для коаксиального кабеля с совершенной изоляцией $v = \frac{1}{\sqrt{L_0 C_0}} = \frac{1}{\sqrt{\varepsilon_r \varepsilon_0 \mu_0}}$, где ε_r - относительная диэлектрическая проницаемость изоляции

кабеля, ϵ_0, μ_0 - электрическая и магнитная постоянная (принимается $\mu_r = 1$).

Замечание. Изменение фазы бегущей волны по длине линии l составит βl . Это изменение фазы будет существенно влиять на процессы в линии, если βl будет соизмерим с 2π , то есть <u>длина линии соизмерима с длиной волны</u>.

Распределение напряжений и токов в однородной длинной линии без потерь описывается уравнениями:

$$\begin{bmatrix} \underline{U}(x) \\ \underline{I}(x) \end{bmatrix} = \begin{bmatrix} \cos\beta x & jZ_c \sin\beta x \\ \frac{j\sin\beta x}{Z_c} & \cos\beta x \end{bmatrix} \begin{bmatrix} \underline{U}_2 \\ \underline{I}_2 \end{bmatrix},$$
(1)

где: x – расстояние от конца линии до точки наблюдения процесса, отсчитываемое от положения нагрузки (при x=0 $\underline{U}_2 = \underline{U}(0)$, $\underline{I}_2 = \underline{I}(0)$, при x=l: $\underline{U}_1 = \underline{U}(l)$, $\underline{I}_1 = \underline{I}(l)$). (рис. 1).

Входное сопротивление линии длиной l при комплексном сопротивлении нагрузки $\underline{Z}_{\scriptscriptstyle H}$:

$$\underline{Z}_{\rm BX} = Z_c \, \frac{\underline{Z}_{\rm H} + j Z_c t g \beta l}{Z_c + j \underline{Z}_{\rm H} t g \beta l} \, .$$

Если $U_2 = U_2 \angle 0$, $I_2 = I_2 \angle -\phi_2$ (активно-индуктивная нагрузка), мгновенные значения напряжения и тока в линии без потерь имеют вид:

$$u(x,t) = \sqrt{2}U_2 \cos\beta x \sin\omega t + \sqrt{2}Z_c I_2 \sin\beta x \sin(\omega t + \frac{\pi}{2} - \varphi_2)$$

$$i(x,t) = \sqrt{2} \frac{U_2}{Z_c} \sin\beta x \sin(\omega t + \frac{\pi}{2}) + \sqrt{2}I_2 \cos\beta x \sin(\omega t - \varphi_2).$$

Уравнения (1) позволяют найти распределение действующих значений тока и напряжения вдоль линии для различных режимов нагрузки. В частности, <u>при</u> <u>согласованной нагрузке</u> ($\underline{Z}_{H} = Z_{C}$):

$$\underline{U}(x) = \underline{U}_2 \left(\cos\beta x + j\sin\beta x \right) = \underline{U}_2 e^{j\beta x} , \ \underline{I}(x) = \underline{I}_2 \left(\cos\beta x + j\sin\beta x \right) = \underline{I}_2 e^{j\beta x}$$

т.е. действующие значения напряжения и тока не зависят от координаты x: $U(x) = U(0) = U_2 = const$, $I(x) = I(0) = I_2 = const$. Начальная фаза напряжения (тока) изменяется по закону $\varphi(x) = \varphi_{u(x)} - \varphi_{u(0)} = \varphi_{i(x)} - \varphi_{i(0)} = \beta x$, то есть пропорционально x. При согласованной нагрузке в линии существует только прямая волна. Согласованный режим линии называется режимом бегущей волны.

Рис. 2

При коротком замыкании ($\underline{Z}_{H} = 0$) холостом ходе ($\underline{Z}_{H} = \infty$) и реактивной нагрузке ($\underline{Z}_{H} = \pm jX$) в линии распространяются прямая и обратная волны равной амплитуды, образующие *стоячие волны* в линии.

<u>В режиме холостого хода</u> <u>I</u>₂=0, имеем <u>U</u>(x) = <u>U</u>₂ cos βx , действующее значение напряжения $U(x) = U_2 |\cos\beta x|;$ <u>I</u>(x) = $j \frac{U_2}{Z_C} \sin\beta x$, действующее значение тока $I(x) = \frac{U_2}{Z_C} |\sin\beta x|.$

В режиме холостого хода, если $\underline{U}_2 = U_2 \angle 0^\circ$ мгновенные значения напряжения и тока:

$$u(x,t) = U_{2m} \cos\beta x \sin\omega t, \quad i(x,t) = \frac{U_{2m}}{Z_c} \sin\beta x \cos\omega t$$

представляют собой уравнения стоячих волн.

На рис. З показано распределение действующего значения напряжения и тока вдоль разомкнутой линии.

Рис. 3

При этом входное сопротивление линии, разомкнутой на конце:

 $\underline{Z}_{\text{вх}}(x) = -jZ_{C} \text{ctg}\beta x = -jZ_{C} \text{ctg}\frac{2\pi}{\lambda}x$. Πρи $x < \frac{\lambda}{4}$ входное сопротивление будет емкостного

характера.

<u>При емкостной нагрузке</u> ($\underline{Z}_{\rm H} = -jX_{C}$) уравнение линии для напряжения

$$\underline{U}(x) = \underline{U}_2 \left(\cos\beta x + \frac{jZ_C}{-jX_C} \sin\beta x \right) = \underline{U}_2 \left(\cos\beta x - \frac{Z_C}{X_C} \sin\beta x \right),$$

действующее значение напряжения $U(x) = U_2 \left| \cos \beta x - \frac{Z_C}{X_C} \sin \beta x \right|;$

уравнение линии для тока $\underline{I}(x) = \underline{I}_2 \left(\cos \beta x + j \frac{-jX_C}{Z_C} \sin \beta x \right) = \underline{I}_2 \left(\cos \beta x + \frac{X_C}{Z_C} \sin \beta x \right),$

действующее значение тока $I(x) = I_2 \left| \cos \beta x + \frac{X_C}{Z_C} \sin \beta x \right|.$

При емкостной нагрузке также наблюдается режим «стоячих волн», но в отличие от режима холостого хода в линии имеет место смещение узлов и пучностей напряжения (и тока) относительно нагрузки (Рис. 4).

Рис. 4

Ближайший к емкостной нагрузке узел напряжения сместится на расстояние $x_0 = \frac{\lambda}{4} - y$, где у длина эквивалентного отрезка линии, разомкнутой на конце, входное сопротивление которой равно сопротивлению нагрузки: $\underline{Z}_{\text{вх}}(y) = -jZ_c \operatorname{ctg}\beta y = -jX_{C_{\text{н}}},$ $Z_c \operatorname{ctg}\beta y = \frac{1}{\omega C_{\text{н}}}.$

Построим распределение действующего значения напряжения и тока вдоль линии при активной нагрузке $\underline{Z}_{H} = R_{H} \neq Z_{c}$. Примем $\underline{U}_{2} = U_{2} \angle 0$. Так как $\underline{U}_{2} = R_{H} \underline{I}_{2}$, уравнения линии имеют вид:

$$\underline{U}(x) = \underline{U}_{2} \cos\beta x + jZ_{c}\underline{I}_{2} \sin\beta x = \underline{U}_{2}(\cos\beta x + j\frac{Z_{c}}{R_{H}}\sin\beta x)$$
$$\underline{I}(x) = j\frac{\underline{U}_{2}}{Z_{c}}\sin\beta x + \underline{I}_{2}\cos\beta x = \underline{I}_{2}(j\frac{R_{H}}{Z_{c}}\sin\beta x + \cos\beta x)$$

Используя представление для напряжения и тока как результат наложения *прямых* и *обратных* волн $U(x) = U_{np}(x) + U_{oбp}(x)$, $I(x) = I_{np}(x) - I_{oбp}(x)$ можно упростить анализ режимов при произвольной нагрузке. Действующее значение напряжения $U_{min} \le U \le U_{max}$, где $U_{min} = |U_{np}| - |U_{oбp}|$, $U_{max} = |U_{np}| + |U_{oбp}|$. При $R_{\mu} < Z_c$ минимум напряжения U_{min} наблюдается в точках x = 0, $\lambda/2$, λ , ..., максимум напряжения U_{max} наблюдается в точках $x = \lambda/4$, $3\lambda/4$, ... При $R_{\mu} > Z_c$ максимум напряжения U_{max} наблюдается в точках x = 0, $\lambda/2$, λ , ..., минимум напряжения U_{min} наблюдается в точках $x = \lambda/4$, $3\lambda/4$, ... На рис. 5 показано распределение действующего значения напряжения и тока при $Z_c = 400$ Ом и $Z_{\mu} = R_{\mu} = 200$ Ом.

Рис. 5

Коэффициент стоячей волны $k_c = \frac{U_{\text{max}}}{U_{\text{min}}}$, при активной нагрузке если $R_{\text{H}} > Z_c$, то

$$k_c = \frac{U_{\max}}{U_{\min}} = \frac{Z_c}{R_{_{\rm H}}}$$
, при $R_{_{\rm H}} < Z_c$, то $k_c = \frac{U_{\max}}{U_{\min}} = \frac{R_{_{\rm H}}}{Z_c}$

Связь уравнений цепной схемы с уравнениями длинной линии

Физической моделью длинной линии является однородная цепная схема, состоящей из каскадно соединенных П-образных четырехполюсников - звеньев чисто реактивных низкочастотных фильтров. В данной работе используется цепочка из 10 звеньев (рис. 6), предусмотрено исследование одного звена (перемычка К отсоединяет одно звено)

Вторичными параметрами фильтра (симметричного четырехполюсника) являются *характеристическое* (согласованное) сопротивление Z_c и постоянная передачи $\underline{\Gamma} = A + jB$. Низкочастотный фильтр (рис. 7) имеет полосу частот пропускания, в которой коэффициент ослабления A = 0 и полосу ослабления (A > 0), разделенные граничной частотой ω_2 . Формально первой граничной частотой считают $\omega_1 = 0$, а второй граничную частоту $\omega_2 = \frac{2}{\sqrt{LC}}$ или $f_2 = \frac{1}{\pi\sqrt{LC}}$. Характеристическое сопротивление

низкочастотного фильтра в полосе пропускания - вещественная величина Z_C . Коэффициент фазы низкочастотного фильтра в полосе пропускания ($\omega < \omega_2$) определяется из уравнения $B(\omega) = arc \cos\left(1 - \frac{\omega^2 LC}{2}\right)$. Характеристическое сопротивление может быть рассчитано через входные сопротивления режима холостого хода или А-параметры

фильтра как симметричного четырехполюсника. Для низкочастотного фильтра (одного звена):

$$\underline{A}_{11} = \underline{A}_{22} = 1 - \frac{\omega^2 LC}{2}, \quad \underline{A}_{12} = j\omega L, \quad \underline{A}_{21} = j\omega C(1 - \omega^2 LC) \ Z_C = \sqrt{\underline{A}_{12}} \underline{A}_{21}, \quad Z_C = \sqrt{\underline{Z}_{xx} \cdot \underline{Z}_{xs}}.$$

Экспериментальное значение коэффициента фазы B звена в полосе пропускания определяют по данным измерений напряжений на входе и выходе фильтра при холостом ходе. Действительно, в полосе пропускания из условия A=0 следует, что:

$$\underline{A}_{11} = \frac{\underline{U}_{1x}}{\underline{U}_{2x}} = \operatorname{ch}\underline{\Gamma} = \operatorname{ch}(A+jB) = \operatorname{ch}A\cos B + j\operatorname{sh}A\sin B = \cos B$$

Так как $\cos B$ - действительная величина, то при холостом ходе комплексные величины U_{1x} и U_{2x} совпадают по фазе, а значение коэффициента *B* может быть найдено из соотношения действующих значений: $\cos B = \frac{U_{1x}}{U_{2x}}$.

Уравнения для звена (низкочастотного фильтра) <u>в полосе пропускания</u> могут быть записаны через вещественную величину Z_c и коэффициент фазы *B*:

$$\begin{bmatrix} \underline{U}_1 \\ \underline{I}_1 \end{bmatrix} = \begin{bmatrix} \cos B & jZ_c \sin B \\ \frac{j \sin B}{Z_c} & \cos B \end{bmatrix} \begin{bmatrix} \underline{U}_2 \\ \underline{I}_2 \end{bmatrix}.$$
 (2)

Для цепочки, нагруженной на сопротивление, равное характеристическому, состоящей из n - одинаковых каскадно-соединенных фильтров (звеньев) в полосе пропускания: $B_{n-цепочкu} = n \cdot B_{_{36енa}}, Z_{Cn-цепочкu} = Z_{C_{36енa}}$. Уравнения для комплексов напряжения $\underline{U}(n)$ и тока $\underline{I}(n)$ на входе n - звена, при условии $\underline{U}(0) = \underline{U}_2, \underline{I}(0) = \underline{I}_2$:

$$\begin{bmatrix} \underline{U}(n) \\ \underline{I}(n) \end{bmatrix} = \begin{bmatrix} \cos nB & jZ_c \sin nB \\ \frac{j \sin nB}{Z_c} & \cos nB \end{bmatrix} \begin{bmatrix} \underline{U}_2 \\ \underline{I}_2 \end{bmatrix}.$$
 (3)

Сравнивая уравнение (3) для звена с уравнением (1) длинной линии без потерь, устанавливаем эквивалентность их описания аналогичными уравнениями и возможность моделирования длинной линии физической цепной схемой из каскадного соединения звеньев фильтра. Однако, в отличие от длинной линии без потерь, у которой параметр Z_C есть частотно-независимая расчетная величина, характеристическое сопротивление Z_C низкочастотного фильтра - частотно-зависимая величина, вне полосы пропускания реактивная. Рабочая частота ω (f) должна находиться в полосе частот пропускания фильтра, а ее значение должно быть таким, чтобы величина коэффициента фазы В одного звена фильтра, определяющая шаг дискретизации фазы, был достаточно мал для достоверного моделирования одного периода модуля синусоидальной функции. При выборе интервала дискретизации, например, $B = \pi/8$ (или 22,5⁰) достаточно 16 звеньев фильтра для моделирования линии длиной в одну длины волны λ. На рис. 9 показаны зависимости постоянной передачи цепочки каскадно соединенных звеньев (фильтров) частоты И коэффициента распространения $\underline{\Gamma}_{n-uenovku} = A_{n-uenovku} + jB_{n-uenovku}$ от $\gamma l = \alpha l + j\beta l$ линии без потерь длиной *l*. Цепная схема из 10 звеньев (фильтров) на рабочей частоте эквивалентна линии длиной 0,625 λ ($\beta l = Bn = 225^{\circ}$).

В принятой модели цепной схемы имеется лишь дискретный ряд значений U(n) и $\underline{I}(n)$, аналогичных непрерывным значениям U(x) и $\underline{I}(x)$ в определенных точках длинной линии с шагом дискретизации $B = \beta l'$, определяемым одним звеном фильтра. Поэтому для цепной схемы, моделирующей длинную линию, все формулы должны быть записаны для дискретных значений напряжений узлов каскадного соединения звеньев фильтров U(n) и $\underline{I}(n)$ с заменой аргумента βx на Bn. При этом $U(0)=U_2$, $\underline{I}(0)=\underline{I}_2$, $U(10)=U_1$, $\underline{I}(10)=\underline{I}_1$. Физическая модель линии, реализованная на стенде, позволяет провести измерение лишь дискретных действующих значений напряжений U(n) в узлах цепной схемы (рис. 9).

Например, для режима емкостной нагрузки ($\underline{Z}_{H} = -jX_{C}$) :

$$U(n) = U_2 \left| \cos Bn - \frac{Z_C}{X_C} \sin Bn \right|, \ I(n) = I_2 \left| \cos Bn + \frac{X_C}{Z_C} \sin Bn \right|.$$

Замечание: В лабораторной работе исследуются следующие режимы длинной линии: режим согласованной нагрузки, режим стоячих волн и режим активной нагрузки. По результатам эксперимента строятся относительные дискретные зависимости $\frac{U(n)}{U_2} = \frac{U(n)}{U(0)}$ при n = 0, 1, 2, ..., 10, проводится сравнение с теоретическими значениями $\frac{U(x)}{U_2}$ в точках с аргументом βx , равным Bn. Делается вывод о соответствии модели

(однородной цепной схемы) и физического объекта - длинной линии (коаксиального кабеля с совершенной изоляцией).

Подготовка к работе

1. Даны первичные параметры линии без потерь: $L_0 = 0,24$ мГн/км, $C_0 = 0,1$ мкФ/км. Рассчитать волновое сопротивление линии Z_c , фазовую скорость v. Считая, что в качестве длинной линии принят коаксиальный кабель с совершенной диэлектрической изоляцией, найти относительную диэлектрическую проницаемость изоляции кабеля.

2. Рассчитать граничную частоту звена низкочастотного фильтра f_2 , принимая значения параметров элементов L=0,24 мГн и C = 0,1 мкФ (рис. 7). Найти значение рабочей частоты f, для которой коэффициент фазы $B = \pi/8$ (22,5⁰). Рассчитать Z_C фильтра на рабочей частоте, сравнить с расчетом волнового сопротивления линии (п.1).

3. Определить длину волны λ [км] линии без потерь (п.1) на рабочей частоте. Определить длину линии l' [км], эквивалентной одному звену фильтра цепной схемы и длину линии l [км], эквивалентной цепной схеме из 10 звеньев. Сравнить l и λ .

4. Построить относительное распределение $U(x)/U_2$ при согласованной нагрузке, отсчитывая x от конца линии. Записать выражение U(n)/U(0) (отношение действующего значения напряжения соответствующего номера узла n к действующему значению напряжения на нагрузке) и рассчитать для n = 0, 1, 2, ..., 10. Отметить рассчитанные значения на графике $U(x)/U_2$, на оси абсцисс указать номера узлов n, соответствующих координатам x.

5. При согласованной нагрузке построить распределение начальной фазы (аргумента) $\phi(x) = \phi_{u(x)} - \phi_{u(0)}$ и распределение начальной фазы (аргумента) $\phi(n)$ комплексного напряжения U(n). На оси абсцисс указать номера узлов *n*, соответствующих координатам *x*.

6. Построить относительное распределение $U(x)/U_2$ для линии, разомкнутой на конце (режим холостого хода), отсчитывая x от конца линии. Записать выражение

U(n)/U(0) и рассчитать для n = 0, 1, 2, ..., 10. Отметить рассчитанные значения на графике $U(x)/U_2$, на оси абсцисс указать номера узлов n, соответствующих координатам x.

7. Рассчитать $C_{\rm H}$ - емкость конденсатора, реактивное сопротивление которого на рабочей частоте равно входному сопротивлению одного разомкнутого звена (фильтра).

8. Построить относительное распределение $U(x)/U_2$ для линии при емкостной нагрузке $\underline{Z}_H = -jX_{C_H}$ (C_H равно значению, рассчитанному в п. 7), отсчитывая x от конца линии. Записать выражение U(n)/U(0) и рассчитать для n = 0, 1, 2, ..., 10. Отметить рассчитанные значения на графике $U(x)/U_2$, на оси абсцисс указать номера узлов n, соответствующих координатам x. Сравнить с графиком, построенным в п.6.

9. Построить относительное распределение $U(x)/U_2$ для линии при активной нагрузке $R_H = 2Z_C$, отсчитывая x от конца линии. Определить U_{max} и U_{min} , k_c . Записать выражение U(n)/U(0) и рассчитать для n = 0, 1, 2, ..., 10. Отметить рассчитанные значения на графике $U(x)/U_2$, на оси абсцисс указать номера узлов n, соответствующих координатам x.

10. Построить относительное распределение $U(x)/U_2$ для линии при активной нагрузке $R_H = 0,2Z_C$, отсчитывая x от конца линии. Определить U_{max} и U_{min} , k_c . Записать выражение U(n)/U(0) и рассчитать для n = 0, 1, 2, ..., 10. Отметить рассчитанные значения на графике $U(x)/U_2$, на оси абсцисс указать номера узлов n, соответствующих координатам x.

Замечание: Пункты 9 и 10 выполняются по указанию Лектора.

Рабочее задание

1. Выбор рабочей частоты

Собрать цепную схему четырехполюсников из звеньев низкочастотных фильтров, установив перемычку К (рис. 10). На вход цепи подать синусоидальное напряжение с действующим значением $U_{ex} \approx 5-7$ В, частотой около 12 - 13 кГц. В режиме холостого хода определить рабочую частоту f таким образом, чтобы на 4 звене (от нагрузки) был узел напряжения, т.е. $U(4) \approx 0$. В дальнейшем частоту f не изменять. Сравнить экспериментальное значение рабочей частоты и значение, рассчитанное в п.2 Подготовки к работе.

Рис. 10

2. Исследование одного звена

2.1 Отделить одно звено (фильтр), сняв перемычку К. Измерить стрелочным милливольтметром напряжения на входе и выходе звена в режиме холостого хода. По полученным данным вычислить коэффициент фазы *В*. Сравнить результат с рассчитанным в п.2 Подготовки к работе. Экспериментальные данные занести в таблицу.

2.2 В режиме согласованной нагрузки ($\underline{Z}_{\rm H} = Z_C$, рассчитанный в п.2 Подготовки к работе) проверить равенство $U_1 = U_2$. Замечание: При невыполнении равенства проверьте правильность выбора рабочей частоты, значения сопротивления нагрузки и результаты расчета п. 2)

2.3 По результатам экспериментов построить векторную диаграмму комплексных напряжений \underline{U}_1 и \underline{U}_2 в режиме холостого хода и при $\underline{Z}_{\rm H} = Z_C$.

3. Моделирование согласованного режима линии без потерь

3.1 Восстановить цепочку, установив перемычку К. Выбрать из модуля резисторов в качестве Z_C резистор с сопротивлением, близким к рассчитанному в п.1 Подготовки к работе (можно также использовать магазин сопротивлений). В режиме согласованной нагрузки при $Z_{\rm H} = Z_C$ измерить действующие значения напряжений U(n) в узлах цепной схемы. Экспериментальные данные занести в таблицу. Рассчитать U(n)/U(0) и нанести рассчитанные значения на график п. 4 Подготовки к работе.

3.2 Измерить распределение фазы $\varphi(n)$ комплексного напряжения U(n), используя двулучевой осциллограф (принять $\varphi_{u(0)} = \varphi(0) = 0$). Для установки нулевого сдвига фаз при измерения $\varphi(n)$ подключить оба входа двулучевого осциллографа к нагрузке (точка 0). Отрегулировать кривые напряжения так, чтобы они совпадали. Между двумя максимумами синусоиды установить по шкале осциллографа 8 см (8 клеток), при этом по шкале абсцисс масштабный коэффициент составит 45⁰/см. Экспериментальные данные занести в таблицу, нанести значения на график п. 5 Подготовки к работе.

3.3 По результатам экспериментов построить векторную диаграмму комплексных напряжений <u>U(n)</u> и годограф (геометрическое место концов векторов комплексных напряжений).

4. Моделирование режима стоячих волн линии без потерь

4.1 Измерить распределение действующего значения напряжения U(n) в узлах цепной схемы в режиме холостого хода ($\underline{Z}_{\rm H} = \infty$). Экспериментальные данные занести в таблицу. Экспериментальные данные занести в таблицу. Рассчитать U(n)/U(0) и нанести рассчитанные значения на график п. 6 Подготовки к работе.

4.2 Выбрать из модуля конденсаторов конденсатор с емкостью, близкой к рассчитанной п.8 Подготовки к работе. Измерить распределение действующего значения напряжения U(n) в узлах цепной схемы в режиме емкостной нагрузки ($\underline{Z}_H = -jX_{C_H}$). Экспериментальные данные занести в таблицу. Экспериментальные данные занести в таблицу. Рассчитать U(n)/U(0) и нанести рассчитанные значения на график п. 8 Подготовки к работе.

4.3 Сравнить данные экспериментов.

5. Моделирование режима активной нагрузки линии без потерь

5.1 Измерить распределение действующего значения напряжения U(n) в узлах цепной схемы при $R_{\rm H} = 2Z_C$ (использовать магазин сопротивлений). Экспериментальные данные занести в таблицу. Определить $U_{\rm max}$ и $U_{\rm min}$, k_C . Рассчитать U(n)/U(0) и нанести рассчитанные значения на график п. 9 Подготовки к работе.

5.2 Измерить распределение действующего значения напряжения U(n) в узлах цепной схемы при $R_{\rm H} = 0, 2Z_C$ (использовать магазин сопротивлений). Экспериментальные данные занести в таблицу. Определить $U_{\rm max}$ и $U_{\rm min}$, k_C . Рассчитать U(n)/U(0) и нанести рассчитанные значения на график п. 10 Подготовки к работе.

Таблица экспериментальных данных Выбор рабочей частоты

Эксперимент f = _____ кГц. Теоретический расчет f = _____ кГц.

Исследование одного звена

$$U_{1x} =$$
 _____ B, $U_{2x} =$ _____ B, $\cos B = \frac{U_{1x}}{U_{2x}} =$
 $B =$ _____ град, $Z_C =$ _____ Ом

3	n	0	1	2	3	4	5	6	7	8	9	10		
	<i>U</i> (<i>n</i>), В согласованный режим: <i>Z</i> _H = <i>Z</i> _C = Ом													
	U(n)/U(0)													
	φ(<i>n</i>), град согласованный режим: <i>Z</i> _н = <i>Z</i> _C = Ом													
4	n	0	1	2	3	4	5	6	7	8	9	10		
	U(n), В холостой ход													
	U(n)/U(0)													
	<i>U</i> (<i>n</i>), В емкостная нагрузка: <i>C</i> _н =мкФ													
	U(n)/U(0)													
5	n	0	1	2	3	4	5	6	7	8	9	10		
	U(n), B													
	$R_{\rm H} = 2Z_C =$ OM													
	U(n)/U(0)													
	0	0	1	2	3	4	_ D, <i>k</i>	6	7	8	9	10		
	U(n) B													
	$R_{\rm H} = 0, 2Z_C =OM$													
	U(n)/U(0)													
	$U_{\text{max}} =$ B, $U_{\text{min}} =$ B, $k_c =$													

Моделирование режимов линии без потерь

Контрольные вопросы

- 1. Определить показание вольтметра, включенного между нагрузкой и n^* звеном
 - а) в режиме согласованной нагрузки;
 - б) в режиме холостого хода.
- 2. Определить показание вольтметра, включенного между m^* и n звеньями
 - а) в режиме согласованной нагрузки;
 - б) в режиме холостого хода.
- 3. Определить n и m номера звеньев, для которых в режиме холостого хода

 $\underline{Z}_{ex}(n) = \underline{Z}_{ex}(m), \ \underline{Z}_{ex}(n) = \underline{Z}_{ex}(m).$

4. Определить *n* - номер звена, для которого в режиме емкостной нагрузки

- 5. Построить распределение модуля входного сопротивления $Z_{ex}(n)$
 - а) в режиме согласованной нагрузки;
 - б) в режиме холостого хода;
 - в) при емкостной нагрузке.
- 6. Построить распределение действующего значения тока I(n), считая значение

 $\underline{U}_1 = \underline{U}(10)$ известным,

- а) в режиме согласованной нагрузки;
- б) в режиме холостого хода;
- в) при емкостной нагрузке.
- 7. Для *n* (номер звена) построить векторные диаграммы комплексов U(n) и I(n)
 - а) в режиме согласованной нагрузки;
 - б) в режиме холостого хода;
 - в) при емкостной нагрузке.
- 8. Для *n* (номер звена) записать мгновенные значения напряжения $u_n(t)$ и тока

 $i_n(t)$

- а) в режиме согласованной нагрузки;
- б) в режиме холостого хода;
- в) при емкостной нагрузке.
- 9. Известно, что линия без потерь нагружена на чисто реактивную нагрузку. Как по графику распределения действующего значения вдоль линии определить характер нагрузки?
- 10. Построить распределение действующего значения U(n) и I(n) в режиме короткого замыкания, считая значение $\underline{U}_1 = \underline{U}(10)$ известным.

^{*} *n*(*m*) = 1, 2, ..., 10 задается

- 11. Построить распределение действующего значения U(n), если в качестве нагрузки выбрано сопротивление, равное входному сопротивлению одного короткозамкнутого звена (фильтра).
- 12. Построить векторные диаграммы комплексов U(n), I(n) и годограф для активной нагрузки $R_{\rm H} = 2Z_C$.
- 13. Построить векторные диаграммы комплексов U(n), I(n) и годограф для активной нагрузки $R_{\rm H} = 0, 2Z_C$.
- 14. Рассчитать коэффициент фазы *B* и характеристическое сопротивление <u>Z</u>_C одного звена (фильтра) на частоте 5*f*. Возможно ли моделирование линии однородной цепной схемой, состоящей из таких звеньев и какой будет шаг дискретизации *l'*?

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. К.С. Демирчян, Л.Р. Нейман, Н.В. Коровкин, В.Л. Чечурин. Теоретические основы электротехники. Т.3. СПб. Питер, 2003.
- 2. Сборник задач по теоретическим основам электротехники. под ред. П.А. Бутырина. Том 2 М.: Издательский дом МЭИ, 2012.